

Embedded devices' firmware
reversing

Jonas Zaddach
zaddach@eurecom.fr

Motivation

● Lots of devices around you contain code – but
you know very little about their internal
workings
● Is the strange behaviour you see a bug?
● Has the gouvernment a built-in backdoor?
● Is the promised 'super-secure' encryption really

super-secure?
● How easy is it for somebody else to hack the

device?
● You can do fun stuff with more control over your

devices!

Devices that we might be looking at

c

My personal experience

Where do you start? - Hardware

● First, try to have a look at the circuit board
● Is there anything written on the chips? Google the

labels to find datasheets
● Are there any interesting pads or connectors?

– 3 pins might be a serial port
– 14 or 20 pins might be a JTAG
– Use a multimeter or logic analyzer to understand pin

functions

Where do you start? - Software

● Next, have a look at firmware updates if you
can get your hands on them
● Is the firmware encrypted?
● Can you disassemble parts of the firmware?
● Is it protected by checksums or can you modify the

firmware (p.ex. a string inside) and still flash it?
● IDA Pro is your friend ...

Finding your way in

● First, you need a way into the device – a way to
inject your code
● A debug JTAG interface
● A debug serial port
● A firmware update that you can modify
● A vulnerability that you can exploit

JTAG interface

● If you find a JTAG interface, you are practically
done
● Get a JTAG programmer for your device, p. ex. a

cheap Olimex for ARM processors
● Get a JTAG programmer software, p. ex. OpenOCD
● You can directly debug the device using hardware

debugging, i.e. hardware breakpoints, single-
stepping, watchpoints

● You can inject code into the device

=> You can skip the rest of the talk :)

Debug serial port

● Often, the manufacturer leaves a serial console
for debug purposes
● A serial port can for example be

– A physical serial port
● With normal signal levels
● With TTL signal levels

– An emulated USB serial port device
● On Linux systems, you may get access to the

system console
● On other systems, you might have peek/poke

commands to modify memory

Linux terminal example

● The Fnacbook (old model)
has a USB serial port
device that can be
activated by putting a
special file on the SD
card => you get a linux
console prompt

c

Bootloader serial prompt example

● My Zyxel Voip adapter has a bootloader menu
that can be accessed using a secret (but well
documented ;) password mechanism. It
allows peek and poke operations
on RAM.

Okay, and then ...?

● Let's assume that you have an input/output
stream (serial port) and you can inject code
=> Where can you go from here?

● You can write code that interacts with the
existing firmware ... but you need to know it ...
lots of work :(

● You can write code to analyze the existing
firmware ... a debugger! :)

Small excursion: debuggers & GDB

● What can you do with a debugger?
● Setting breakpoints
● Setting watchpoints
● Single-stepping
● Inspecting values (registers and memory)
● Changing values

(registers and memory)

Small excursion: debuggers & GDB

● GDB (Gnu DeBugger) is the most common and
universal debugger in the open-source world
● Very powerful and extensible
● Support for loads of platforms and languages
● Command-line interface
● Lots of tools (Graphical interfaces, etc) build on

GDB
● The GDB remote protocol is the

lingua franca for embedded
debuggers

The GDB remote protocol

● Sometimes running the user interface on your
target is not feasible (embedded hardware)
● GDB allows you to run only a small portion (the

“stub”) on the target system and the user interface
on the host system

● Small number of primitives needs to be
implemented

● Complex logic can be put on the host system

Minimal GDB remote protocol
command set

● ? - Last signal, indicates why the target halted
● c – continue execution
● g/G – read/write general registers
● p/P – read/write specific register
● m/M – read/write memory at address
● z/Z – Hardware (and software) breakpoint

support by target (not mandatory)

For detailed info on the GDB protocol see: http://davis.lbl.gov/Manuals/GDB/gdb_31.html and
http://www.embecosm.com/appnotes/ean4/embecosm-howto-rsp-server-ean4-issue-2.html

http://davis.lbl.gov/Manuals/GDB/gdb_31.html
http://www.embecosm.com/appnotes/ean4/embecosm-howto-rsp-server-ean4-issue-2.html

Functionality provided by the host

● Set software breakpoints: Uses memory write
command to replace code by breakpoint
instructions

● Single-step: Find the next executed instruction
after the current one

● Higher level commands as memory dump,
disassembly, scripting, ...

How do I get the stub working with
my device?

● If you use anything else than ARM, the
assembler part needs to be ported to your
architecture

● If something needs to be initialized by the stub,
you need to add that code

● You need to write a serial port driver
● You need a memory range where the stub can

reside

Architecture

GDB Stub

Firmware

Target device

Serial Port
Multiplexer

Debugger host

Serial Line

GDB

Firmware
Monitor

UDP

UDP

Prima il dovere, poi il piacere

● Stop ... before injecting a debugger, we still
need some intelligence!
● We still don't know the memory layout of our target

=> Produce a memory map
● We still don't have a serial port driver

Memory Map

Write a value to memory and observe what
happens
● Memory contents do not change:

– This is a ROM range
– Memory is write protected

● Memory changed:
– Is the change reflected at a different address, too? (Then

you automatically know the region's size)
– Did it change in the expected way? Alignment might

mess with you ...
● Device crashes ... invalid access :(

Memory Map (2)

0x4000 0000 – 0x4001 0000: Memory Mapped
 devices
0x0080 0000 – 0x0080 1000: Data SRAM

0x0060 0000 – 0x0060 1000: Code ROM

0x0010 0000 – 0x0020 0000: DRAM

0x0000 0000 – 0x0000 1000: Code SRAM

0x0000 0000 – 0x0000 0040: Interrupt vectors

Serial port driver

Difficulties you might experience

● There is code in ROM regions
● A memory protection/memory management unit

is present
● Code can be time critical, i.e. relying on values

from timer hardware
● Caches can prove challenging (support for

caching is currently missing from the stub)
● The serial port is used otherwise
● The firmware overwrites the interrupt vectors

Solutions

● Code in ROM regions
● Not much you can do ... set breakpoints in RAM

before or after ROM code execution

● MPU
● Find setup of protection and disable it

● MMU
● Complicated ... find mapping code and ensure that

mapping for the stub exists, and code mappings are
writable

Solutions

● Time-critical code regions
● Difficult to detect
● Different timing due to breakpoints might trigger

race-conditions
● Do not break in a time-critical region

● Caching
● Know your architecture ... make sure the effects of

caching are taken into account in the stub

Solutions

● Concurrent serial port usage
● Demultiplex the serial port on the host side
● GDB should only receive GDB packets from the

target
● The GDB host only talks to the target when the stub

is active
● You can control yourself when you type :)

=> A small python program can separate the
two streams and distribute them to different
UDP ports

Acknowledgements

● I want to thank Aurélien Françillon for
supervising and discussing the topic with me

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

