

MOCA 2012

Beware of hypervisor:
understanding ring -1

whoami
● Mariano `emdel` Graziano (@emd3l).

● PhD student at EURECOM, Sophia-Antipolis, France.

● Politecnico di Torino, Computer and Communication networks.

● IRC (Azzurra, Efnet, Freenode).

● Ex Playhack Security

● Current interest: Virtualization.

Intro
● Virtualization is everywhere.

● Cloud services (Google, Apple, Amazon, Microsoft etc etc).

● We are security guys @ MOCA 2012, why do we use
virtualization?

– Analyze malware? (Sandboxes)

– Test our exploits? (Lab)

– Create new protection systems?

– Create malware based on virtualization? (Bluepill, Vitriol...).

Virtualization 101
● Virtualization concept is already applied to modern OS:

– Scheduling time-sharing technique (CPU
Virtualization).

– Virtual memory layout (Memory Virtualization).

● Virtualization of entire Architecture:

– CPU virtualization.

– I/O virtualization (Memory and Devices).

Virtualization 101
● Virtual Machine Monitor (VMM aka Hypervisor) definition:

 Provides an environment which is essentially idential
with the original machine.

 Programs in this environment show at worst only minor
decreases in speed.

 VMM is in complete control of system resources.
● Virtual Machine (VM):

 It is the environment created by the virtual machine
monitor.

Virtualization 101
● Virtual Machine Monitor properties:

 Dispatcher (hypervisor starting point to decide which
module to call for the given trap).

 Allocator (It has to decide what system resources
are to be provided)

 Interpreter (It needs one interpreter routine per
privileged instruction, each routine has to simulate
the effect of the instruction which trapped).

Virtualization 101
● Virtual Machine properties:

 Efficiency (All innocuous instructions are executed
by the hardware directly).

 Resource control (Must be impossible for a program
running in a VM to affect the system resources).

 Equivalence (A program running in a VM performs in
a manner indistinguishable from the case the
program runs in the host).

✔ VMM is any control program that satisfies the three properties
of efficency, resource control and equivalence.

✔ VM is the environment which any program sees when running
with a VMM present (Real machine + VMM).

Virtualization 101
● VMM typology:

 Type I
 Type II

*Picture from Wikipedia.

Virtualization 101
● Popek and Goldberg put forward a set of requirements that must be met

in their 1974 paper “Formal Requirements for Virtualizability Third
Generation Architectures.”

● They divided instructions in 3 categories:

– Privileged InstructionsPrivileged Instructions: are defined as those that may execute in a
privileged mode, but will trap if executed outside this mode.

– Control sensitive instructionsControl sensitive instructions: are those that attempt to change the
configuration of resources in the system (physical memory assigned to a
program or the mode of the system).

– Behavior sensitive instructionsBehavior sensitive instructions: : are those that behave in a different way
depending on the configuration of resources, including all load and store
operations that act on virtual memory. (mode of the system)

Virtualization 101
● In order for an architecture to be virtualizable, Popek and

Goldberg determined that all sensitive instructions must sensitive instructions must
also be privileged instructionsalso be privileged instructions.

● This means that a hypervisor must be able to intercept
any instructions that change the state of the machinechange the state of the machine in a
way that impacts other processes.

Virtualization 101
● In order to be virtualizable the set of set of control of sensitive control of sensitive

instructionsinstructions must be a subset of privileged instructions privileged instructions. (Any
instructions that modifies the configuration of resources in the
system must either be executed in privileged mode or trap if it
isn’t).

● There is a set of 17 instructions17 instructions in the x86 in the x86 instruction set that
does not have this property.

● For example, the LARLAR and LSLLSL instructions load information
about a specified segment. Because these cannot be trapped,
there is no way for the hypervisor to rearrange the memory
layout without a guest OS finding out.

Virtualization 101
● In order to overcome the issue of x86 architecture we can use 3

possible solutions:

– Binary RewritingBinary Rewriting.

– ParavirtualizationParavirtualization.

– Hardware-Assisted Virtualization.Hardware-Assisted Virtualization.
 In the next slides I will give you the main idea of Binary rewriting In the next slides I will give you the main idea of Binary rewriting

and Paravirtualization and then we will focus out attention on and Paravirtualization and then we will focus out attention on
Hardware Assisted Virtualization.Hardware Assisted Virtualization.

Due to lack of hardware support

 The normal evolution

Binary Rewriting

● The binary rewriting approach requires that the instruction stream be scanned by
the virtualization environment and privileged instructions identified.

● It inserts inserts breakpointsbreakpoints on any jump and on any unsafe instruction.

● When it gets to a jumpjump, the instruction stream reader needs to quickly scan the quickly scan the
next part for unsafe instructionsnext part for unsafe instructions and mark them.

● When it reaches an unsafe instruction, it has to emulateemulate it it.

● Performance problem.

Paravirtualization

● Conceptually, this is similar to the binary rewriting approach, except that the rewriting rewriting
happens at compile time (or design time)happens at compile time (or design time), rather than at runtime.

● In order to simulate a privileged instruction the hypervisor exposes a set of hypercallshypercalls (push (push
the values and then raise an interrupt).the values and then raise an interrupt).

Hardware assisted Virtualization
● Intel gives processor level support for virtual machines (support for

VMM & VM).

● Processor support by a form of processor operation called Virtual
Machine eXtension (VMX) – on AMD we have SVM (in this
presentation we will focus on Intel).

● 2 kinds of VMX operations:

 VMX root operation (VMM)
 VMX non root operation (VM)

● VMX transitions = transitions between VMX root & VMX non root.

● 2 Kinds of VMX transitions:

 VM ENTRIES (transitions into VMX non root).
 VM EXITS (transitions from VMX non root to VMX root).

Hardware assisted Virtualization

*Picture from Intel manuals found on the net.

Hardware assisted Virtualization
● Processor behavior in VMX root operations is like outside VMX but there are a

set of new instructions (VMX instructions)

● New instructions:

– VMXON (enter vmx operation)

– VMXOFF (leave vmx operation)

– VMREAD (read from the VMCS)

– VMWRITE (write to the VMCS)

– VMPTRLD (load VMCS pointer)

– VMPTRST (store vmcs pointer)

– VMLAUNCH/VMRESUME (launch or resume the VM)

– VMCALL (call to the hypervisor)
● Processor behavior in VMX non root is restricted and modified to facilititate the

virtualization.

● It is this limitation that allow the VMM to retain control of processor resources.

Life Cycle
● VMXON to enter VMX operations

● Using VM ENTRIES a VMM can enter guests into VM. VM
ENTRY == VMLAUNCH & VMRESUME instructions.

● VM EXITS transfer control to a known entry point. VMM will
take the appropriate action.

● The VMM can decide to shut itself down and leave the VMX
operation (VMXOFF).

VMCS
● Virtual Machine Control Structure.

● VMX non root operation and VMX transitions are controlled by
VMCS.

● VMCS can be accessed through the VMCS pointer (One per
logical processor).

● VMCS pointer is read and write using the instructions
VMPTRST & VMPTRLD.

● VMM configure the VMCS using VMREAD, VMWRITE &
VMCLEAR instructions.

● VMM could use a different VMCS for each VM. For a VM with
multiple logical processor VMM can use a VMCS for each
virtual processor.

VMCS
● VMCS manages the transitions in and out of VMX non root

operation (VM entry & VM exit).

● VMCS manages the processor behavior in VMX non root
operation.

● VMM can use different VMCS for a single VM and can use
different VMCS for different virtual processors.

● At any given time only one is the current VMCS.

● A VMCS is active by executing VMPTRLD with the address of
that VMCS. Inactive by calling VMCLEAR with the VMCS
address.

● A VMCS remains current until the execution of another
VMPTRLD with an address of a different VMCS.

VMCS
● VMCS region: region in memory with a VMCS associated to a logical

processor.

● You can access the VMCS by using its physical address (VMCS pointer).

● VMCS pointer 64 bit address and for architectures that do not support Intel
64 the 63:32 bits are not set.

● Every field in VMCS associated with a 32 bit value (its encoding).

● Encoding is provided to VMREAD/VMWRITE when it is necessary to
read/write that field.

● Software should never access or modify the VMCS data using ordinary
memory operations.

● Format to store VMCS data is implementation specific and not
architecturally defined and in addition some VMCS data can be maintained
on the processor and not in the VMCS region.

WTF

IMPLEMENTATION SPECIFIC? WTF?

WTF

Let's dig a bit...

VMCS
● Format of VMCS region:

BYTE OFFSET CONTENTS

0 VMCS REVISION ID

4 VMX ABORT INDICATOR

8 VMCS DATA

VMCS
● VMCS Revision ID: first 32 bit of the VMCS region.

● Processor that mantains the VMCS data in different formats
use different VMCS revision ID.

● Must be set before the VMCS region is used.

● VMPTRLD fails if you use a revision id different from the one
used in the processor (MSR_IA32_VMX_BASIC).

VMCS
● VMX_ABORT_INDICATOR: A logical processor writes a non

zero value into those bits If a VMX abort occurs.

● VMCS DATA: it's the part that control the VMX non root
operation and VMX transitions. The format is implementation
specific.

VMCS Data Organization
● VMCS is organized into 6 logical groups:

– Guest State Area: processor state saved into guest area on
VMCS exits and loaded from there on VMCS entries.

– Host State Area: processor state loaded from host state
area on VM exits.

– VM Execution Control Fields: these fields control the
behavior in VMX non root operation. They determine in part
the cause of VM exits.

– VM EXIT Control Fields: these fields control VM exits.

– VM ENTRY Control Fields: these fields control VM entries.

– VM EXIT Info Fields: These fields describe the cause and
nature of the VM Exits. They are read only.

VMCS
● For the sake of brevity I will not list the fields of each group.

● Keep in mind that VMX non root operation can be controlled
by data structures that are referenced by pointers in a VMCS (
e.g I/O Bitmap, APIC access page etc).

● As already said (do you remember? Wake up :)) encoding is
provided to VMREAD/VMWRITE when it is necessary to
read/write that field.

● Again the format to store VMCS data is implementation
specific and not architecturally defined.

● But we want to know... “Our crime is that of curiosity” (cit.)

Challenge
● We want to know the memory layout of the VMCS.

● We have to keep into account that the offsets of each field will
change for the different Intel Microarchitectures.

● But how? We are at ring -1...

● From the OS the memory in which the VMCS is allocated is
not visible.

● How?

Brainstorming

We have different approaches:
 The long one: fill the VMCS region with known values and

dump the physical memory via Firewire for example.
 The short one: Modify an existing/open source hypervisor.

Approach 1
● For the first approach I suggest you to use Inception is a

FireWire physical memory manipulation and hacking tool
exploiting IEEE 1394 SBP-2 DMA.

● The tool can unlock (any password accepted) and escalate
privileges to Administrator/root on almost any machine you
have physical access to.

● The tool now has full read/write access to the lower 4GB of
RAM on the victim.

● Thank you Carsten Maartmann-Moe for the tool!

Approach 2
● We have to modify an exisisting hypervisors. Two choices:

● KVM
● HyperDBG

● General idea:

 Put in every entry of the VMCS region the number of
the entry.

 Perform the VMREAD for each encoding.
 The output will be the number of the entry.
 Print it (you will read it from the debug messages).

The changes will be in the vmx.c file.

Quest
● Remember our goal is to know the memory layout of the VMCS.

● Ok, let's do it in few steps:

– Test if your system support hardware assisted virtualization (cat
/proc/cpuinfo has to contain vmx)

– Download an opensource hypervisor (KVM or HyperDBG).

– Modify few lines in the vmx.c file :)

Quest
We Manually write the fields of the VMCS without using the
VMREAD/VMWRITE.

 The code is self-explanatory (code for HyperDBG):

 for(i = 0; i < 1024; i += 1)

*(vmxInitState.pVMCSRegion + i) = i;

 v = VmxVmcsRead(0x00002004);

 GuestLog("ADDRESS_MSR_BITMAPS entry #: %08x" , v);

 We will perform a VMREAD for each field, in this way we will
obtain the number of the entry.

Quest
● We compile again the driver and we launch again the

hypervisor (for sure it will crash but on the debug messages
we can see the results and we have to parse it!).

● Now, if we want, we can check if the results are reasonable
with the dump of the physial memory...

● Print the physical address of the VMCS and then the revision
id for example and check if they match.

VMCS memory layout
● Number of entry for the Intel Core Microarchitecture.

● ADDRESS_MSR_BITMAPS_HIGH : 00000035

● VM_EXIT_MSR_STORE_ADDR_HIGH : 00000037

● VIRTUAL_APIC_PAGE_ADDR : 0000002e

● …..............................etc etc.

● The full list is available on my site

Holy Grail
● To have the absolute offset we need just few bash lines:

● pre="0x";for hexnum in `cat offset.log | cut -d ":" -f2`; do
val10=`printf "%d\n" prehexnum`; dec=`echo "$val10*4" |
bc`;printf "%x\n" $dec;done > mseek_offset.log

● One line of Bash... I know I'm lazy :)

● Until now only the offsets for the Intel Core Microarchitecture
are available.

Call for partecipation
● Download the vmx.c file from my site

● Download HyperDBG

● Compile using HyperDBG with the given vmx.c file

● Send me your output from 'dmesg'

● Thank you!

● I will release soon the vmx.c file for KVM

● Known limitation HyperDBG works only on IA32 systems with
no PAE.

Links
● Intel 64 and IA-32 Architectures Software Developer’s Manual

Volume 3B: System Programming Guide, Part 2

● Gerald J. Popek and Robert P. Goldberg (1974). "Formal
Requirements for Virtualizable Third Generation
Architectures". Communications of the ACM 17 (7): 412 –421.

● Http://www.ivanlef0u.tuxfamily.org/?p=120#more-120 (Abyss part 1, 2,3)

● http://deroko.phearless.org/cpuid_break.rar

● http://www.breaknenter.org/projects/inception/

● http://www.linux-kvm.org/page/Main_Page (IRC chan too)

● http://code.google.com/p/hyperdbg/

http://www.ivanlef0u.tuxfamily.org/?p=120#more-120
http://www.breaknenter.org/projects/inception/
http://www.linux-kvm.org/page/Main_Page
http://code.google.com/p/hyperdbg/

Thanks
● Andrea Lanzi for advices, the beers and some slides :)

● Aristide Fattori for his advices on hyperbdg.

● rookie for his advices on virtualization and his kindness.

● Ivanlef0u for his hints.

● My colleagues at Eurecom, we are kickass :)

Hiring

 Are you interested in security?
 Do you like French Riviera?
 Are you gaining a master of science?
 Are you looking for an internship?
 Are you looking for a PhD?

Let me know and we can drink a beer discussing about
that

Questions

QUESTIONS?

emdel@playhack.net
twitter: @emd3l

mailto:emdel@playhack.net

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

